In my last post I discussed a bioengineered E. coli strain capable of producing an engine compatible biofuel. I hailed the finding as more efficient than ordinary biofuels because this technique has less environmental impact than biofuels from crops, for example, or cellulose, which instead use great amounts of water and forest land.
I did some more reading on the topic and found out that, surprise surprise, there are some costs in harvesting biofuels from bacteria as well, so my discussion was incomplete. However, there are good news at the horizon.
When I first read the Howard et al. paper, I imagined a petri dish of E. coli sitting in a slime of oil-like substance. I think I got confused with making yogurt. :-) In reality, the biofuel molecules are stored inside the cells (bacteria, in this case) and need to be taken out without harming the cells. Biofuel secretion strategies have been dubbed "milking." The difference, though, is that contrary to milk and cows, biofuels are generally toxic to the bacteria that produce them.
Several methods have been investigated to efficiently "milk" biofuel molecules out of bacteria without harming them. To understand these strategies, we need to learn a new concept: an efflux pump is a membrane transporter protein that carries a substance toxic to the cell outside the cell itself. These proteins remove all kinds of toxic substances, including antibiotics, for example, and they may be specific to one in particular, or carry a whole range.
In [1], Dunlop et al. discuss the use of efflux pumps in "milking" biofuels out of bacteria and reduce their toxicity to the cells:
"Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity."The researchers first looked at the whole genome of E. coli to identify all genes encoding efflux pumps. They found 43 different pumps expressed in the E. coli genome, and tested them against a range of possible biofuels. Their strategy was as follows: the grew a culture of pooled bacteria with different subpopluations, each subpopulation expressing a different pump. In the absence of toxic biofuel-like substances, all subpopulations grew in equal proportions, and none had an advantage over the others. When a substance was introduced, the subpopulations with the most advantageous pumps with respect to that particular substance outgrew the rest.
This is what happened, for example, when they introduced geranyl acetate:
"When the pooled culture was grown in the presence of an inhibitory biofuel such as geranyl acetate, some efflux pumps conferred a distinct advantage. Although all strains started out with equal representation, after 38 h the population composition changed, with cells containing the advantageous pumps becoming an increasingly large proportion of the population. The efflux pumps that enhanced tolerance to geranyl acetate originated from a variety of hosts and include both known and previously uncharacterized pumps."In their study, Dunlop et al. used a type of membrane transporters called "RND," which are made of big molecules and are only found in Gram-negative bacteria. In a more recent paper [2], Doshi et al. studied a broader set of pumps called ABC, ATP-binding cassette:
"Unlike RND proteins, transporters belonging to the ATP- binding cassette (ABC) protein family are widely found in all five kingdoms of life. They share a conserved structural architecture and specifically import or export a wide variety of molecules and ions across cellular membranes."Doshi et al. tested whether this family of broadly specific pumps could efficiently mediate the secretion of four different biofuel molecules. Similarly to the Howard et al. paper, they used a bioengineered strain of E. coli and noticed that
"the secretion process was sustained for at least 6 days without the need to replenish the growth medium or culture. Thus, for the same quantity of biofuel produced conventionally, we have a dramatic reduction in biomass scale and significant gain in the ease of recovering the biofuel."Though my understanding is that work still needs to be done to improve this technique and make it feasible for different types of biofuels, the fact that these transporters are spread across different species makes it potentially translatable to other organisms and therefore of broader use.
On a completely different note, can you guess what the macro picture is? :-)
[1] Dunlop, M., Dossani, Z., Szmidt, H., Chu, H., Lee, T., Keasling, J., Hadi, M., & Mukhopadhyay, A. (2011). Engineering microbial biofuel tolerance and export using efflux pumps Molecular Systems Biology, 7 DOI: 10.1038/msb.2011.21
[2] Doshi, R., Nguyen, T., & Chang, G. (2013). Transporter-mediated biofuel secretion Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1301358110